Origin and fate of dissolved organic matter in the subsoil

Patrick Wordell-Dietrich1 · Leena Renita Dsilva1 · Patrick Liebmann2 · Robert Mikutta3 · Georg Guggenberger2 · Karsten Kalbitz1

1 Institute of Soil Science and Site Ecology, Technische Universität Dresden, Germany
2 Institute of Soil Science, Leibniz University Hannover, Germany
3 Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Germany

Background

Dissolved organic matter (DOM) is the most mobile form of organic matter in soils and represents a major source of carbon (C) in the subsoil. However, the transformation processes of DOM during the migration in soils remain unclear. The preferential removal of more sportive DOM compounds (e.g., phenols) in the topsoil and leaching of more labile once (carbohydrates) cannot explain e.g., the depletion of 13C in DOM in the subsoil nor the higher stability of DOM against microbial decomposition. The cascade model (Fig. 1) proposes that DOM is subjected to continuous sorption on mineral surface combined with microbial processing and remobilization when migrating through the soil[1]. However, there is lack of experimental evidence under field conditions, which supports such a model. By using 13C labeled leaf litter we hypothesize that

- the contribution of fresh litter-derived C in mineral-associated organic matter (MOM) and DOM decreases with increasing soil depth
- the removal of labeled litter introduce a pulse of DO13C mobilized from MOM to larger depth due to exchange processes with fresh non-labeled DOM

Materials and Methods

Labeling experiment on a Dystric Cambisol in a beech forest
1st Addition of 13C enriched beech litter
(124 g C m⁻², 1880 %)
2nd After 2 years stop of 13C input of labeled litter and replacement with original litter
Soil sampling 0 and 18 month after replacement (0-180 cm)
Analysis
Water extractable organic C (WEOC)
Density fractionation (IPOM, OPOM and MOM)
TOC and 13C measurements of all fractions
UV and fluorescence spectroscopy of WEOC

Results

- WeOC more sensitive for labeled litter-derived C than MOM
- Contribution of litter-derived C decreases with depth and time
- Small pulse of DO13C in 5-10 cm after 18 month (blue arrow)
- Decline of litter-derived C in between 0-60 cm

Conclusion

- Fresh litter-derived C is only minor source of DOM and MOM in the subsoil
- DOM in subsoil originated more from microbial processed OM
- Exchange processes of fresh and altered DOM not evident in MOM, but in DOM?
- First field indications of the cascade model for DOM migration in the soil

Litter-derived C in MOM and DOM

- Decreasing C/N ratio of indicate more processed organic matter (Nmin ?)
- Shift in DOM composition with depth indicated by change in SUVA and HIX
- Higher proportion of plant-derived compounds between 0-50 cm
- Below increasing proportion of microbial-derived compounds

MOM as DOM source

- Decreasing C/N ratio of indicate more processed organic matter (Nmin ?)
- Shift in DOM composition with depth indicated by change in SUVA and HIX
- Higher proportion of plant-derived compounds between 0-50 cm
- Below increasing proportion of microbial-derived compounds

Ideas for further analyses on samples with low DOC concentrations 1 mg L⁻¹ and small volume (5 mL)?

This research is part of the research unit FOR 1806 (SUBDOM): The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils. Founded by the German Research Foundation (DFG)