Dipl.-Geotechn. Sabine Kulikov, Dr. rer. nat Friederike Darbinjan
UW Umweltwirtschaft GmbH

Verwertungseignung von Bodenmaterial am Beispiel der Region Chemnitz-Erzgebirge

Bodenaushub als Abfall zu betrachten sollte der Vergangenheit angehören. Boden ist in jedem Fall ein Wertstoff. Bereits bei der Planung und Durchführung von Baumaßnahmen kann der Anfall und der Umgang mit dem Bodenaushub koordiniert werden, so z. B. durch:

- Minimierung des Bodenaushubes durch entsprechende Planung und Projektierung wie beispielsweise:
 * Nutzung morphologischer Besonderheiten (Hanglage etc.),
 * Ausnutzung konstruktiver Variationsmöglichkeiten
 * Verzicht auf Unterkellerung,
 * Hochlage von Erschließungsstraßen,
- weitgehende, sinnvolle Verwertung als Bau- und Bauzuschlagstoff sowie zur Geländemodellierung im Baugebiet,
- fachgerechte Zwischenlagerung auf bewirtschafteten Zwischenlagern mit dem Ziel einer späteren Verwertung.

In der Region Chemnitz-Erzgebirge stehen vorwiegend Verwitterungsböden an, die sich generell in eine stärker bindige Deckschicht (Verwitterungslehm) und eine grusig-kiesige, zur Basis steinige Liegenschaftschicht (Verwitterungsgrus/-schutt) untergliedern.

Die durch Verwitterung entstandenen autochthonen grusig-kiesigen Schichten, können jedoch keinesfalls allochthonen tertiären oder quartären Kiesablagerungen, die als ausgezeichnete Baustoffe gelten, gleichgestellt werden. Erstere haben noch keinen Transport erfahren und der Verwitterungsprozeß, die Umsetzung weniger verwitterungsbeständiger Minerale, ist noch nicht abgeschlossen.
Hinsichtlich ihres Schichtenaufbaus können folgende Verbreitungsgebiete für Bodensubstrate unterschieden werden:

- Festgesteinsregion des Berglandes und Bergvorlandes (Erzgebirge),
- Lößregion des Bergvorlandes und Tieflandes,
- Einheit der Auensedimente.

Verwertungsmöglichkeiten für Bodenaushub

Es gibt Verwertungsmöglichkeiten mit relativ geringen Anforderungen an das Bodenmaterial und Varianten mit sehr hohen Anforderungen. Bei ausreichender Menge und Qualität des Bodenmaterials ist den höherwertigen Varianten der Vorzug zu geben. Durch Absieben, Mischen und Brechen sind Qualitätsverbesserungen des Bodenaushubes und somit auch höherwertige Nutzungen möglich.

Verwertungsmöglichkeiten mit relativ geringen Anforderungen an die Zusammensetzung und Qualität des Bodenmaterials sind:

- Geländeregulierung/Landschaftsbau (DIN 18 915)
- Dammschüttmaterial für Lärm- und Sichtschutzwälle (ZTVE-StB 76/78 Lärmschutzwälle)
- Überschüttung von Leitungsgräben (Merkblatt zur Verfüllung von Leitungsgräben, 1979)
- Wegebau für Baustellenfahrzeuge (Merkblatt für Maßnahmen zum Schutz des Erdplanaums, 1980).

Einsetzbar sind unter Berücksichtigung der für die jeweilige Verwertung gültigen DIN-Normen und Vorschriften (einschließlich der Einbauvorschriften) hauptsächlich gemischtkörnige und grobkörnige Bodenmaterialien, bedingt feinkörnige. Auch für einen Einsatz als

- Hinterfüll- und Überschüttungsmaterial,
- Dammschüttmaterial für den Verkehrswegbau,
- Abdeckmaterial von Altablagerungen,
- Kulturboden zur Rekultivierung und Melioration,

ist eine breite Substratpalette unter Beachtung der geltenden Anforderungen geeignet.

Hohe Anforderungen an das Bodenmaterial stellen die folgenden Nutzungen. Sie setzen die Einhaltung bestimmter qualitativer Eigenschaften voraus:

- Trag- und Frostschutzschichten,
- Filter- und Drainageschichten,
- Straßen- und Wegeunterbau,
- Auflager- und Bettungsschichten im Rohrleitungsbaum,
Verwertungseignung in Abhängigkeit von der Substratzusammensetzung

Grundvoraussetzung für jede Nutzung, bautechnisch oder meliorativ, ist die Kenntnis der Eigenschaften des Baustoffes oder Rohstoffes. Soll unkontaminierter Bodenaushub einer Verwertung zugeführt werden, müssen demzufolge zuerst seine Eigenschaften bestimmt werden, die maßgeblich von der Substratzusammensetzung abhängen.

a) Feinkörnige Böden

Böden mit einem Feinkorn-Massenanteil von mehr als 40 % werden als feinkörnige Böden bezeichnet.

Aufgrund des hohen Feinkornanteiles sind diese Böden sehr frostempfindlich (F3). Eine Ausnahme bilden ausgeprägt plastische Tone, die gering bis mittel frostempfindlich sind (F2). Feinkörnige bindige Böden besitzen meist eine schlechte Verdichtbarkeit (V3). Schluffe sowie stark schluffige Böden sind sehr witterungsanfällig, d. h. sie neigen bei Witterungseinflüssen zum Aufweichen.

Besonders homogene feinkörnige Böden mit hohem Tonanteil sind im Deponiebau für Basis-, Zwischen- und Oberflächenabdichtungen in Betracht zu ziehen. Die Qualitätsanforderungen an das Material sind je nach Deponietyp und Art der Abdichtung unterschiedlich hoch.

Desweiteren ist ein Einsatz als Rohstoff in der keramischen Industrie möglich. Für die Eignungsbeurteilung ist die Kenntnis des Kornaufbaus, des Mineralbestandes und des Chemismus erforderlich.

Ein Einsatz als Baustoff ist im Zusammenhang mit der Witterungsanfälligkeit nur eingeschränkt möglich. Im unaufgewühlten Zustand ist das Material im Bereich mit relativ geringen Anforderungen an den Baustoff einsetzbar, wie

- Geländeregulierung/Landschaftsbau,
- Abdeckmaterial für Altablagерungen,
- Material zur Überschüttung von Leitungszenoren (bedingt).

Zu den feinkörnigen Böden im Raum Chemnitz-Erzgebirge zählen Löße und Lößlehme, Au lenleme, glazilimnische Schluffe (Beckenschluffe) sowie bei einem Feinkormanteil > 40 % stark tonige oder schluffige Verwitterungslehme. Auch Giesbehemergel können bei entsprechend hohem Feinkornanteil zu den feinkörnigen Böden zählen.

b) Gemischtkörnige Böden

Die im Raum Chemnitz-Erzgebirge vorrangig vorkommenden gemischtkörnigen Böden können nach ihren Feinbodenanteil in bindige und nichtbindige unterschieden werden.
Die bindigen gemischtkörgigen Böden zeichnen sich durch einen hohen Gehalt an Feinteil (15 bis 40 %) aus. Die Hauptanteile bilden Sand, Grus/Kies, wobei auch Steine/Geschiebe enthalten sind. Aufgrund des hohen Anteils an Feinteilen sind diese Substrate sehr frostempfindlich (F3). Sie besitzen meist eine mittlere Verdichtbarkeit (V2). Bei stark schluffigen Böden besteht die Gefahr des Aufweichens bei Witterungseinflüssen.

Bindige gemischtkörgige Böden können als Kulturboden zur Rekultivierung und Melioration eingesetzt werden.

Die bindigen gemischtkörgigen Substrate können, wenn sie nicht aufgeweicht und breig sind, für folgende Erdbauwerke mit relativ geringen Anforderungen an den Baustoff eingesetzt werden:

- Geländeregulierung/Landschaftsbau,
- Dammschüttmaterial für Lärm- und Sichtschutzwälle,
- Überschüttungsmaterial von Leitungszonen.

Eine bedingte Anwendbarkeit als Baustoff besteht folgende Nutzungen:

- Hinterfüll- und Überschüttungsmaterial,
- Dammschüttmaterial im Verkehrswegebau,
- Baustellenfahrzeugwege,
- Abdeckmaterial von Altablagerungen.

Für Nutzungen mit hohen Anforderungen an den Baustoff eignen sich bindige gemischtkörgige Böden nur in Ausnahmefällen. Der hohe Gehalt an schluffigen und tonigen Bestandteilen bedingt eine relativ geringe Wasserdurchlässigkeit, so daß ein Einsatz als Dichtungsschicht im Deponie- und Straßenbau in Betracht zu ziehen ist.

Im Raum Chemnitz-Erzgebirge zählen vorrangig Verwitterungslehme der Festgesteine und Solifuktionslehme sowie die lokal vorkommenden Geschiebelehme zu den bindigen gemischtkörgigen Böden.

Die nichtbindigen gemischtkörgigen Böden weisen einen Feinanteil von 5 bis 15 % auf. Aufgrund des geringen Feinbodenanteiles besitzen sie eine mittlere bis geringe Frostempfindlichkeit (F2, teilweise F1) und sind meist gut verdichtbar (V1).

Die nichtbindigen gemischtkörgigen Substrate sind generell als Baustoff in Bereichen mit relativ geringen Anforderungen an den Baustoff einsetzbar:

- Geländeregulierung/Landschaftsbau,
- Dammschüttmaterial für Lärm- und Sichtschutzwälle,
- Hinterfüll- und Überschüttungsmaterial,
- Überschüttungsmaterial von Leitungsgräben,
- Wegebau für Baustellenfahrzeuge.

Bedingt einsetzbar sind nichtbindige gemischtkörgige Böden sind als:

- Bodenaustauschmaterial zur Bauwerksgründung
- Dammschüttmaterial für Verkehrswegebau.
Folgende Nutzungen mit hohen Anforderungen an den Baustoff sind für nichtbindige Böden bedingt möglich:

- Straßen- und Wegeunterbau,
- Filter- und Drainageschichten (besonders tertiäre Kiese und Sande),
- Auflager- und Bettungsmaterial für den Rohrleitungsbau,
- Streusand.

Zu den nichtbindigen Böden zählen im Raum Chemnitz-Erzgebirge die Verwitterungsschutte und einige Verwitterungslehme der Festgesteine, fluviatile und glazifluviatile Sande und Kiese sowie tertiäre Kiese und Sande.

c) Grobkörnige Böden

Grobkörnige Böden sind Böden der Sand- und Kiesfraktion, die sich von den vorangegangenen durch äußerst geringe Feinkornanteile (≤ 5 %) unterscheiden.

Aufgrund des äußerst geringen Anteils an Feinboden sind diese Substrate nicht frostempfindlich (F1) und mit Ausnahme enggestufter Sande und Kiese meist gut verdichtbar (V1).

Ähnlich den anderen Böden sind auch die Sande und Kiese generell als Baustoff im Bereich mit relativ geringen Ansprüchen einsetzbar, mit Ausnahme des Abdeckmaterials für Altablagerungen.

Von den Verwertungsmöglichkeiten mit hohen Ansprüchen an den Baustoff kommen unter anderem folgende in Frage:

- Trag- und Frostschatzschichten,
- Straßen- und Wegeunterbau,
- Auflager- und Bettungsschichten im Rohrleitungsbau,
- Filter- und Drainageschichten,
- Streusand.

Zu den grobkörnigen Böden zählen im Raum Chemnitz-Erzgebirge glazifluviatile sowie teilweise tertiäre Sande und Kiese.

Beurteilung der Verwertungseignung durch schrittweisen Kenntnisgewinn

Die vorliegende Methodik soll vor allem eine Hilfestellung für die Bauleitplanung sein, die sich in 2 Etappen gliedert:

- vorbereitende Bauleitplanung (Phase 1) - (Flächenutzungspläne)
- verbindliche Bauleitplanung (Phase 2) - (Bebauungsplan).

Wichtig ist, daß parallel zu jeder Bauleitplanungsphase eine Untersuchungsetappe läuft. Für jede Untersuchungsetappe kann nach Abschluß der Recherchen und Untersuchungen eine Aussage zu den Verwertungsmöglichkeiten des anfallenden Bodenaushubs getroffen werden, wobei die Genauigkeit der Aussage mit jeder Etappe zunimmt.
Phase 1 - Vorbereitender Bauleitplan (Flächennutzungsplan)

Der erste Schritt zur Beurteilung der Eignung des Bodenmaterials ist die Einsichtnahme in das Kartenwerk "Wirtschaftliche Verwertung von Bodenaushub" beim StUFA Chemnitz mit dem Ergebnis einer Vorinformation über die relevanten Nutzungsmöglichkeiten der am konkreten Standort anfallenden Bodenmaterialien.

Durch die Karte erfolgt neben der Information über das Hauptssubstrat des Bodenaushubes durch das Aufführen der Gesteine auch eine Angabe zum Baugrund an sich.

Phase 2 - Verbindlicher Bauleitplan (Bebauungsplan)

Der Bebauungsplan bildet die Grundlage für weitere Maßnahmen und kann Festlegungen zu Art, Maß und Bauweise der baulichen Anlagen enthalten. In dieser Planungsphase sollte durch eine Vor-Ort-Begehung des Baustandortes, die morphologische Situation beurteilt und durch eine entsprechende Höheneinordnung der Gebäude ein unnötiger Anfall von Bodenaushub verhindert werden. Falls vom vorgesehenen Baustandort oder benachbarten Baustandort, die sich auf den gleichen Substraten befinden, Baugrundgutachten vorliegen, sollten diese recherchiert werden.

Phase 3 - Bauausführungsplan

Die Ermittlung dieser bodenmechanischen Kennwerte stellt für eine Baugrunduntersuchung keinen zusätzlichen Aufwand dar.

Die Bauausführungsplanung stellt die Endphase dar, wo bereits die Entscheidung über eine Wiederverwendung bzw. einen Wiedereinbau des Aushubmaterials fällt.

In dieser Phase laufen eventuell noch Vor-Ort-Versuche zur Wiedereinbaubarkeit. Sehr nützlich ist während der Bauausführung die Baubetreuung durch einen Gutachter, der Vor-Ort entscheidet, welche Schichten (aufretende Inhomogenitäten, bindige Zwischenlagen, Blöcke) aus dem Bodenaushub entfernt werden müssen, damit keine Beeinträchtigung der Einbau- und Verdichtungsfähigkeit erfolgt.

Unabhängig von der Bauausführungsplanung können bei rostoffwürdigen Materialien (nur bei Großbaumaßnahmen) spezielle Nachfolgeuntersuchungen angestrebt werden, um Sortenunreinheit und Qualität des Erdauhubs zu überprüfen (Lehme, Löß für Grabkeraflieck). Derartige Untersuchungen lohnen jedoch nur, wenn eine ausreichende Erdauhubsmenge anfällt.

In der nachstehenden Tabelle ist die methodische Vorgehensweise und Datenerfassung demonstriert.
<table>
<thead>
<tr>
<th>Phase 1: Vorbereitender Bauleitplan</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studium der Karte "Verwertung von Bodenaushub"</td>
<td>Substrat</td>
</tr>
<tr>
<td>- Bodenart nach DIN 18 196</td>
<td></td>
</tr>
<tr>
<td>- Bodenklasse nach DIN 18 300</td>
<td></td>
</tr>
<tr>
<td>- Gewinnungsort</td>
<td></td>
</tr>
<tr>
<td>- Verwertung</td>
<td></td>
</tr>
<tr>
<td>Erstellung eines Flächenutzungsplanes unter Berücksichtigung der gewonnenen Daten</td>
<td>Zeitpunkt des Anfalls von Bodenaushub</td>
</tr>
<tr>
<td>- Menge</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase 2: Verbindlicher Bauleitplan</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor-Ort-Begehung (Einschätzung der morphologischen Situation - Höheneinordnung der Gebäude)</td>
<td>Substrat</td>
</tr>
<tr>
<td>- Bodenart nach DIN 18 196</td>
<td></td>
</tr>
<tr>
<td>- Bodenklasse nach DIN 18 300</td>
<td></td>
</tr>
<tr>
<td>- Gewinnungsort</td>
<td></td>
</tr>
<tr>
<td>- eventuelle Wiederverwendbarkeit des Aushubmaterials innerhalb der Baumaßnahme bzw. am Baustandort</td>
<td></td>
</tr>
<tr>
<td>- Verwendungsmöglichkeiten</td>
<td></td>
</tr>
<tr>
<td>Erstellung eines Bebauungsplanes</td>
<td>Zeitpunkt des Anfalls von Bodenaushub</td>
</tr>
<tr>
<td>- Mengen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase 3: Bauausführungsplanung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufforderung zur Abgabe eines Angebotes für Baugrundgutachten mit den bodenmechanischen Kennwerten:</td>
<td></td>
</tr>
<tr>
<td>* Kornverteilung (DIN 18 123)</td>
<td></td>
</tr>
<tr>
<td>* natürlicher Wassergehalt (DIN 18 121)</td>
<td></td>
</tr>
<tr>
<td>* Konsistenzgrenzen (DIN 18 123)</td>
<td></td>
</tr>
<tr>
<td>* Trockenrohdichte</td>
<td></td>
</tr>
<tr>
<td>* Proctordichte (DIN 18 127)</td>
<td></td>
</tr>
<tr>
<td>Baugrundgutachten</td>
<td>Bodenart nach DIN 18 196:</td>
</tr>
<tr>
<td>- Bodenklasse nach DIN 18 300:</td>
<td></td>
</tr>
<tr>
<td>- Konsistenzgrenzen:</td>
<td></td>
</tr>
<tr>
<td>- Mengen:</td>
<td></td>
</tr>
<tr>
<td>- Gewinnungsort:</td>
<td></td>
</tr>
<tr>
<td>- Wiederverwendbarkeit des Aushubmaterials innerhalb der Baumaßnahme bzw. am Baustandort: j/n</td>
<td></td>
</tr>
<tr>
<td>- konkrete Verwendungsmöglichkeiten</td>
<td></td>
</tr>
<tr>
<td>- Kontrolle des Aushubmaterials bezüglich auftretender Inhomogenitäten</td>
<td></td>
</tr>
<tr>
<td>Vor-Ort-Versuche zur Wiedereinbaufähigkeit und Verdichtbarkeit der Aushubmaterialien</td>
<td></td>
</tr>
<tr>
<td>Einschalten eines Gutachters zur Baubetreuung</td>
<td>Überwachung der Vor-Ort-Versuche</td>
</tr>
<tr>
<td>Rohstoffuntersuchungen</td>
<td></td>
</tr>
<tr>
<td>* Qualitätsanforderungen</td>
<td></td>
</tr>
<tr>
<td>* Abnehmer finden</td>
<td>Rohstoffwürdigkeit: j/n als Rohstoff</td>
</tr>
<tr>
<td>Substratzusammensetzung</td>
<td>Substrat</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Feinkörnige Böden</td>
<td>Banderton</td>
</tr>
<tr>
<td></td>
<td>Geschiebelehmm</td>
</tr>
<tr>
<td></td>
<td>Lös</td>
</tr>
<tr>
<td></td>
<td>Auelehm</td>
</tr>
<tr>
<td></td>
<td>Verwitterungslehmm über Basalt, Biotitgneis, Phyllit, Schieferletten, Konglomeraten</td>
</tr>
<tr>
<td>bindige</td>
<td>Solfluidale Ablagerungen (Gehängelehmm/-schutt) Verwitterungsschutt über Schieferletten, Tonstein Verwitterungslehmm über Muskovitglimmerschiefer</td>
</tr>
<tr>
<td>Gemischtkörnige Böden</td>
<td>Verwitterungslehmm über Muskovitgneis, Granulit Verwitterungsschutt über Biotitgneis/glimmerschiefer, Sandstein, Konglomerat</td>
</tr>
<tr>
<td>nicht bindige</td>
<td>Verwitterungsschutt über Phyllit, Tonschiefer</td>
</tr>
<tr>
<td></td>
<td>Verwitterungslehmm über Quarzit, Quarzpophyr</td>
</tr>
<tr>
<td></td>
<td>Verwitterungsschutt über Muskovitgneis, Granulit, Quarzit, Basalt, Muskovitglimmerschiefer</td>
</tr>
<tr>
<td></td>
<td>Flußkies/-schotter</td>
</tr>
<tr>
<td></td>
<td>Pleistozäne und tertiäre Sande und Kiese</td>
</tr>
<tr>
<td>Grobkörnige Böden</td>
<td>Pleistozäne Sande und Kiese</td>
</tr>
</tbody>
</table>

V - Verdichtbarkeit; F - Frostempfindlichkeit
Dipl.-Geologe Steffen Schürer, Staatliches Umweltfachamt Chemnitz

Ansätze für ein regionales Bodenschutzkonzept am Beispiel der Region Chemnitz-Erzgebirge

1 Einleitung

Eine Möglichkeit der praxisorientierten Umsetzung der Ansprüche des Bodenschutzes stellt ein regionales Bodenschutzkonzept dar, wenn es orientierend an § 7 Abs. 3 EGAB durch die zuständige Verwaltungsbehörde als Grundlage für das Verwaltungshandeln autorisiert ist oder als inhaltlicher Bestandteil des Regionalplanes gemäß § 9 Landesplanungsgesetz (LPG vom 24.06.1992) behördenverbindlichen Charakter erhält.

2 Inhalt des regionalen Bodenschutzkonzeptes

In einem regionalen Bodenschutzkonzept für die Entwicklung der Region Chemnitz-Erzgebirge sollen allgemeine und gebietsspezifische Aspekte des Bodenschutzes miteinander verknüpft werden. D. h., die Grundsätze und Ziele des Bodenschutzes werden auf
die konkreten Standortverhältnisse, die naturräumliche Gliederung, die Bodennutzung und die Tendenzen der wirtschaftlichen- und Siedlungsentwicklung bezogen.

Entsprechend den zeitlichen Bezugsebenen lassen sich die konzeptionellen Grundsätze und Ziele des Bodenschutzes in die Aufgabenbereiche

- Reparierender Bodenschutz,
- Bodenschutz bei der Bodennutzung,
- Bodenschutz bei der Bodennutzungsplanung

untergliedern.

2.1 Reparierender Bodenschutz

Ziel des reparierenden Bodenschutzes ist es, durch Sicherung und Sanierung von stofflichen Bodenbelastungen sowie durch Renaturierung oder Rekultivierung devastierter Standorte den insbesondere durch anthropogene Einflüsse hervorgerufenen Verlust oder die Einschränkung der Funktionalität des Bodens und/oder seiner Nutzbarkeit nutzungs- und schutzgutbezogen zu beheben.

Dabei sollen nachfolgende Grundsätze Berücksichtigung finden.

- Standorte mit stofflichen Bodenbelastungen (z. B. havariebedingt) sollen derart gesichert und/oder saniert werden, daß eine vom Boden als Träger der Schadstoffe ausgehende Gefährdung anderer Schutzgüter nachhaltig unterbunden wird. Das Sanierungsziel soll sich insbesondere an der durch die Art der gegenwärtigen und potentiellen Bodennutzung bedingten Gefährdung des Menschen und am Grad der Gefährdung der anderen Schutzgüter orientieren.

- Bei Maßnahmen der Renaturierung hat der Boden eine besondere Bedeutung als geökologischer Standortfaktor. Grundsätzlich soll davon ausgegangen werden, daß bei der Wiederherstellung der standorttypischen Verhältnisse bei Aufschüttungen oder Verfüllungen auch die dem Standort entsprechenden Bodenarten verwendet werden. Gleichzeitig kann aber auch die Entwicklung bestimmter Standortverhältnisse durch den zielorientierten Einbau geeigneter Bodenarten unterstützt werden.

Der Einsatz von naturreifem Materialien, wie z. B. von Recyclingbaustoffen, soll grundsätzlich vermieden werden und nur in Betracht kommen wenn der Einsatz

* als Baustoff erfolgt und erforderlich bzw. zweckmäßig ist,
* der natürlichen Entwicklung des Standortes, also auch des Bodens, nicht entgegen steiert und
* die Schutzgüter nicht beeinträchtigt werden.

- Bei Maßnahmen der Rekultivierung soll die Bedeutung des Bodens als Standort und Lebensgrundlage für Nutzpflanzen und nachwachsende Rohstoffe Berücksichtigung finden. Bei Rückverfüllungen im Rahmen der Rekultivierung ist grundsätzlich nur unbelastetes, standortäquivalentes Bodenmaterial zu verwenden. In Anlehnung an die Bodenstruktur und -textur des Umfeldes soll ein Auftrag eines ausreichend mächtigen kulturfähigen Bodensubstrates und Oberbodenhorizontes (Mutterboden) erfolgen.

- Bodenauftrag auf agrarwirtschaftlich genutzten Flächen (Melioration) darf nur mit dem Ziel der Standortverbesserung (Krumenvertiefung, Wasser- und Nährstoffhaushalt,
Gefügestabilisierung) erfolgen. Es darf nur standortgerechter Boden gleicher oder besserer Bodengüte in Mächtigkeiten unter einem Meter aufgetragen werden. Die Überschüttung des A_p-Horizontes (Oberboden) mit Unterboden ist hierbei auszuschließen.

2.2 Vorsorgender Bodenschutz bei der Bodennutzung

Bei der Bodennutzung sollen durch geeignete Vorsorgemaßnahmen des stofflichen und nichtstofflichen Bodenschutzes die Bodenfunktionen weitgehend erhalten und deren nachteilige Veränderung verhindert werden. Der Boden soll ebenso in seiner Nutzbarkeit wie auch in seiner Bedeutung als Naturkörper und landschaftsgeschichtliche Urkunde vor Beeinträchtigung und Zerstörung bewahrt werden.

Dabei gilt es insbesondere nachfolgende Grundsätze zu berücksichtigen.

- Emissionsbedingte Stoffeinträge in den Boden sollen auf das unabdingbar notwendige Maß beschränkt werden und sich an dem anerkannten Stand der Technik orientieren.

- Bei dem Umgang mit (Schad-)Stoffen sind durch geeignete Vorsorgemaßnahmen bodenschädigende Einträge zu verhindern bzw. zu minimieren.

- Nutzungsbedingte Stoffeinträge in den Boden sollen auf das unabdingbar notwendige Maß beschränkt werden bzw. das notwendige Maß für die Erhaltung, Wiederherstellung oder Verbesserung von Bodenfunktionen nicht überschreiten.

- Mit baubedingt anfallendem, unkontaminiertem Bodenmaterial ist so umzugehen, daß er vor Vergeudung, Vernichtung und nachteiliger Veränderung seiner Beschaffenheit bewahrt wird. Er soll möglichst direkt einer wirtschaftlichen und ökologisch sinnvollen Verwertung zugeführt werden. Ist dies nicht sofort möglich, soll er mit dem Ziel der späteren Verwertung in bewirtschafteter Form so zwischengelagert werden, daß seine Funktionalität und Nutzungseignung weitgehend erhalten bleibt bzw. durch geeignete Behandlung verbessert wird (z. B. Bodenbörse).

- Bodenauffüllungen in der Landschaft sollen nur dann erfolgen, wenn sie nachweislich notwendig, zweckmäßig und ökologisch sinnvoll sind.

- Nutzungs- und baubedingte nichtstoffliche Bodenbelastungen, wie z. B. Verdichtung, Verschlämmung, Erosion sollen durch geeignete Vorsorgemaßnahmen vermieden bzw. minimiert werden.

In den Gebieten mit starker Erosionsanfälligkeit kommt insbesondere bei der landwirtschaftlichen Bodennutzung dem vorsorgenden Erosionsschutz eine besondere Bedeutung zu.

2.3 Vorsorgender Bodenschutz bei der Bodennutzungsplanung

Durch vorsorgenden Bodenschutz bei der Bodennutzungsplanung soll der Boden vor unnötiger flächenhafter Destabilisierung bzw. nachteiliger Veränderung bewahrt werden.

Es soll insbesondere

- die Schutzwürdigkeit des Bodens und der Bodenzustand bei der Standortwahl für vorgesehenen bauliche Nutzungen berücksichtigt werden,
- die Flächeninanspruchnahme und der Landschaftsverbrauch auf das unabdingbar nötige Maß beschränkt werden sowie die
Die Schutzwürdigkeit des Bodens vor Devastierung ergibt sich aus der Bedeutung der jeweiligen Funktionen im Naturhaushalt, seiner Nutzungseigenschaften sowie seiner Bedeutung als Naturkörper. Sie ist entsprechend den folgenden Grundsätzen standortbezogen zu ermitteln, zu bewerten und zu berücksichtigen.

- Der Boden soll als Puffer- und Filtermedium für das Bodenwasser zum Schutz des Grundwassers vor Schadstoffeinträgen an Standorten mit bindigen Deckschichten über Grundwasserleitern, insbesondere bei Grundwassernutzung (Trinkwasserschutzgebiete, Heilquellenschutzgebiete) erhalten bleiben.
- Der Boden soll als Aufnahme-, Transport- und Speichermedium für das Nieder- schlagswasser im Hinblick auf die Nutzung des Wasseraufnahme- und Retentionsvermögens
 * für die Grundwasserneubildung an Standorten mit ausgeprägten Grundwasserleitern, insbesondere bei Grundwassernutzung (Trinkwasserschutzgebiete, Heilquellenschutzgebiete) und
 * in Hochwassergefährdungs- und Hochwasserentstehungsgebieten zum Schutz vor Hochwasserereignissen
weitgehend erhalten und vor unnötiger Versiegelung bewahrt werden.

- Der Boden soll als landschaftsprägender Faktor zur Erhaltung des Landschaftscharakters und -bildes insbesondere im Bereich landschaftsprägender Flächen und im Bereich von Flächen, deren Versiegelung weiteren Landschaftsverbrauch begünstigt, vor Devastierung durch Flächeninanspruchnahme für Bebauung bewahrt werden.

- Flächen mit Böden besonderer Eignung als Standort für Nutzpflanzenanbau, d. h. insbesondere Böden mit Ackerzahlen > 50 sowie andere Flächen, deren Bodengüte positiv von der Umgebung abweicht, sollen in ihrer Nutzbarkeit erhalten und vor Devastierung durch Flächeninanspruchnahme für Bebauung bewahrt werden.

- Böden können als Naturkörper und/oder landschaftsgeschichtliche Urkunde aufgrund ihrer besonderen Eigenart, Empfindlichkeit oder Seltenheit besonders schutzwürdig sein. Insbesondere fossile Böden, relictische Böden und gebietsbezogen selten oder nur an Einzelstandorten anzutreffende Bodenformen sollen vor schädigenden Einfüssen bewahrt werden und in ihrer natürlichen Form erhalten bleiben. Entsprechende Flächen sollen als Vorbehaltsflächen (Bodenschutzgebiete/-flächen) erfaßt und ausgewiesen werden.

Um diese zu unterbinden bzw. zu minimieren, müssen die erforderlichen Maßnahmen der Vorsorge und Gefahrenabwehr durchgeführt werden. Insbesondere sollen

- Art, Intensität und Ausmaß der Bodenbelastung bei der Festsetzung von Standort und Art der vorgesehenen (baulichen) Nutzung berücksichtigt werden,
- Nutzungskonflikte durch Nutzungsänderungen, Nutzungseinschränkungen oder Maßnahmen der Sicherung bzw. Sanierung vermieden oder behoben werden,
- der Anteil an belastetem Bodenaushub durch Berücksichtigung der horizontalen und vertikalen Verteilung von Schadelementen im Boden minimiert werden,

Zum Schutz vor unnötigem Landschaftsverbrauch, zur Erhaltung des Landschaftscharakters und zum Schutz vor gebietsbezogenen negativen Veränderungen des Naturhaushaltes und seiner Stoffkreisläufe soll die flächenhafte Bodendevastierung durch Versiegelung minimiert bzw. auf das unbedingt nötige Maß beschränkt werden.

Bei Planungen, die Flächenverbrauch nach sich ziehen, sollen nachfolgende Grundsätze Beachtung finden.

- Berücksichtigung des Prinzips des sparsamen und schonenden Umganges mit Grund und Boden bei der Flächenbedarfsprognose in bezug auf
 * den Eigenentwicklungsbedarf von Gemeinden,
 * den Entwicklungsbedarf für Gemeinden in Planungsgemeinschaften,
 * die gebietsbezogenen Entwicklungsfunktionen von zentralen Orten (Klein-, Unter-, Mittel- und Oberzentren),
 unter Einbeziehung bereits vorhandener Gewerbe-, Industrie- und Wohnstandorte sowie Handelseinrichtungen und des Nutzungspotentials von Altstandorten, Industriebanken und sanierungsbedürftigen Wohnbaubereichen,
- Priorität der Sanierung und Folgenutzung ehemals gewerblich bzw. anderweitig bereits baulich genutzter Flächen gegenüber Neuansiedlungen peripherer Bebauungsgebiete (Flächenrecycling),
- Nachverdichtung und Nutzung von Baulücken im Innenbereich,
- Intensive Flächennutzung durch Ausschöpfung der zulässigen Geschoßflächenzahl (Geschoßfläche pro Nettobaulandfläche) bei Einhaltung bzw. Unterschreitung der Grundflächenzahl (bebaute Grundfläche pro Nettobaulandfläche).

Zur weitgehenden Erhaltung der Bodenfunktionen bei der Flächeninanspruchnahme sollen bei Planungen die Möglichkeiten der versiegelungarmer Bauweise, d.h. der quantitativen und qualitativen Minimierung der Bodenversiegelung, geprüft werden und entsprechend den konkreten Standortbedingungen Berücksichtigung finden.

- Zur Minimierung des Versiegelungsanteils sollen folgende Grundsätze Beachtung finden:
 * Minimaldimensionierung von Verkehrsflächen entsprechend der zu erwartenden Belastungsintensität,
 * Rückbau und Rekultivierung nicht mehr oder stark untergenutzter Verkehrsflächen und sonstiger versiegelter Bereiche (Entsiegelungspotential),
 * Erhöhung des Vegetationsflächenanteils aller Freiflächen und Gewährleistung von breitflächiger Versickerung des Niederschlagswassers in den Boden,
 * Einhaltung bzw. Unterschreitung der zulässigen Grundflächenzahl und effektive Auslastung der zulässigen Geschoßflächenzahl.
- Zur Minimierung der Versiegelungsintensität sollen folgende Grundsätze berücksichtigt werden:
 * Verwendung von bodenversiegelnden, ganzflächig verarbeiteten Materialien nur, wenn dies zur Sicherung der tatsächlichen Nutzungsintensität unvermeidlich ist,
 * Ersatz von Vollversiegelung durch wasserdurchlässige Befestigungsart, wenn die Nutzungsart dies zuläßt (Belagänderungspotential),

Bei Planungen sollen die sich aus der strukturellen Entwicklung und den Entwicklungstendenzen sowie aus der natürlichen Gliederung und natürlichen Gegebenheiten ergebenden gebietsspezifischen Schwerpunkte besondere Berücksichtigung finden.

Die Analyse der Bodennutzung (Angaben der Staatlichen Vermessungsämter zur Flächennutzung, Stand 10/93) und Bodenversiegelung zeigt deutliche raumbezogene Unterschiede, welche sich aus der strukturellen Entwicklung und den Entwicklungstendenzen sowie aus der natürlichen Gliederung ergeben.

Aus dem Anteil an Bebauungs- und Verkehrsflächen ergibt sich unter Berücksichtigung von Versiegelungskoeffizienten für die Region eine Bodenversiegelung von 7,24 %.

Die Stadt Chemnitz und die Landkreise Chemnitzer Land und Stollberg bilden in der Region einen Verdichtungsraum mit überdurchschnittlich hohem Versiegelungsgrad von 8,2 bis 24,84 %. Die Erzeugerkreise sind hingegen mit 5,5 bis 5,75 % relativ gering versiegelt (vgl. Abbildung 3).

Durch Baumaßnahmen (Genehmigungen von Bebauungs- sowie Vorhaben- und Erlassführungsplänen durch das Regierungspräsidium Chemnitz) wurde im Zeitraum von 1991 bis 12/1994 in der Region eine Fläche von ca. 2448 ha in Anspruch genommen. Nimmt man die zulässige Grundflächenzahl entsprechend der Art der baulichen Nutzung als Anteil der Baugrundstücke, der durch bauliche Anlagen überdeckt wird (vgl. § 17 Baunutzungsverordnung), ergibt sich bei einem durchschnittlichen Versiegelungsgrad von ca. 69 % in den Baugebieten eine Neuversiegelung von etwa 1686 ha. Das entspricht rund 0,4 % der Gesamtfläche. Der höchste Anteil an Neuversiegelung ist im Landkreis Chemnitzer Land mit ca. 1,5 % und in Chemnitz (Stadt) mit ca. 0,79 % zu verzeichnen (vgl. Abbildung 4,5).

Es ist die Tendenz zu erkennen, dass der Zuwachs an baulicher Bodennutzung in ländlich geprägten Gemeinden im Umfeld zentraler Orte und an überregionalen Entwicklungsachsen und somit das Bauen auf der "grünen Wiese" dominiert.

In der Region betrifft das besonders:
- das Oberzentrum Chemnitz, insbesondere entlang der B 95 im NW, im Bereich BAB 4 und 72 sowie entlang der B 174 im SO,
- die Mittelzentren Glauchau, Meerane, Annaberg, Freiberg und Mittweida.

Aus der Bedeutung der jeweiligen Bodenfunktion im Naturhaushalt, seiner Nutzungseigenschaften und seiner Bedeutung als Naturkörper lassen sich gebietsspezifische Anforderungen des vorsorgenden, planerischen Bodenschutzes ableiten.

- **Im Verdichtungsraum Chemnitz - Chemnitzer Land - Stollberg** soll unter Bezug auf die Tendenz der überdurchschnittlichen Ansiedelung von Industrie und Gewerbe die damit verbundene Bodenversiegelung durch primäre Orientierung auf intensive Flächennutzung und Flächennutzung von Altstandorten, Industriebrachen und sanierungsbedürftiger Wohnbaubereiche bei der Flächenbedarfsermittlung.
 * Berücksichtigung des Nutzungspotentials von Altstandorten, Industriebrachen und sanierungsbedürftiger Wohnbaubereiche bei der Flächenbedarfsermittlung.
 * Priorität der Sanierung und Folgenutzung gegenüber Neubebauung,
 * Rückbau und Renaturierung nicht benötigter Versiegelungsflächen bei der Folgenutzung vorhandener versiegelter Flächen,
 * flächensparende und versiegelungssarme Bauweise.

- **Das Erzgebirge** ist in seinem mittleren und östlichen Teil eines der am dichtesten be- siedelten Mittelgebirge Europas. Um eine weitere Beeinträchtigung bzw. Zerstörung des landschaftstypischen Charakters zu vermeiden, soll besonders sensibel die Notwendigkeit, Standortwahl und Dimensionierung von Neuversiegelungen geprüft und notwendige Bebauungen an die vorhandene Siedlungs- und Landschaftsstruktur angepaßt werden.

- In den **Talauen der Fließgewässer**, insbesondere der Zschopau, der Flöha, der Freiberger Mulde, der Chemnitz, der Zwönitz, der Würschnitz und der Zwicker Mulde spielt der Boden als geoökologischer Standortfaktor sensibler Landschaftsbereiche eine besondere Rolle. Darüber hinaus ist die Erhaltung des Wasseraufnahmevermögens des Bodens in den Auern und **Hochwasserentstehungsgebieten** zum Schutz vor Hochwasserereignissen sowie in **Trinkwassereinzugsgebieten** zur Sicherung des

- In Gebieten mit großflächigen, geogen und anthropogen bedingten Bodenbelastungen durch Schwermetalle und Arsen, insbesondere im Raum
 * Freiberg / Brand-Erbisdorf,
 * St. Egidien,
 * Ehrenfriedersdorf,
 sollen bei der Bodennutzung und Bodennutzungsplanung die erforderlichen Maßnahmen zur Vorsorge und Gefahrenabwehr, insbesondere zum Schutz der Gesundheit des Menschen, getroffen werden.

3 Ausblick

Je umfassender die regionale Kenntnis der Leistungsfähigkeit, Funktionalität und Schutzwürdigkeit der Böden ist, desto besser können die allgemeinen Grundsätze und Ziele des Bodenschutzes standortbezogen festgesetzt und bei Planungs- und Genehmigungsverfahren sowie bei der Umweltüberwachung berücksichtigt werden. Eine entscheidende Verbesserung der Datengrundlage wird sich mit Vorliegen der Konzeptbodenkarten 1:50000 (BK 50) ergeben, welche im Sächsischen Landesamt für Umwelt und Geologie, Bereich Boden und Geologie, erarbeitet werden. Die BK 50 ist Voraussetzung für die Ableitung thematischer Bodenkarten, insbesondere von
 - Karten zur Leistungsfähigkeit der Böden (Bodenfunktionen, Bodennutzung),
 - geökologischen Standortkarten,
 - Karten zu den Baugrundeigenschaften der Böden,
 - Karten zur Verwertungseignung von Böden,
 - Karten der Schutzwürdigkeit von Böden.
 Die damit verfügbaren standortbezogenen Bodendaten bilden die Basis für ein praxisorientiertes regionales Bodenschutzkonzept in der Region Chemnitz-Erzgebirge.

Literatur

- Sächsisches Staatsministerium für Umwelt und Landesentwicklung:
 Grundsätze des Bodenschutzes im Freistaat Sachsen, Entwurf 6/1994
- Sächsisches Staatsministerium für Umwelt und Landesentwicklung:
 Landesentwicklungsplan Sachsen, Dresden 1994
- Staatliches Umweltfachamt Chemnitz:
 Beiträge zum Bodenschutz in der Region Chemnitz-Erzgebirge, Chemnitz 1994
Abbildung 1 Bodenregionen und Bodenlandschaften in der Region Chemnitz-Erzgebirge

Nach Übersichtskarte der Böden des Freistaates Sachsen
Sächsisches Landesamt für Umwelt und Geologie 1993

Bodenregionen
1. Lößregion des Bergvorlandes und Tieflandes
2. Festgesteinregion des Berglandes und Bergvorlandes

Bodenlandschaften
- Oberer Lagen und Kamm des Erzgebirges
- Untere und mittlere Lagen des Erzgebirges
- Vorerzgebirgisches Becken
- Mulde - Lößbrügelland
- Zeitz - Altenburger Lößbrügelland

Staatl. Umweltamt Chemnitz
Referat Bodenschutz
Stephanplatz 3
09112 Chemnitz
Abbildung 2: Bodennutzung in der Region, anteilig zu den Gesamtflächen der Landkreise

(Unter Verwendung von Angaben der Staatlichen Vermessungsämter Stand 10/93)

Abbildung 3: Bodenversiegelung durch Verkehrs- und Bebauungsflächen

(Unter Verwendung von Angaben der Staatlichen Vermessungsämter Stand 10/93)
Abbildung 4: Bodenversiegelung durch genehmigte Bauvorhaben bis 1.4.1994, bezogen auf die Landkreise (relativ) von 1991

(Unter Verwendung von Angaben des RP Chemnitz Stand 12/94)

Abbildung 5: Bodenversiegelung durch genehmigte Bauvorhaben bis 1.4.1994, bezogen auf die Landkreise (absolut) von 1991

(Unter Verwendung von Angaben des RP Chemnitz Stand 12/94)
Zum Umgang mit Bodenaushub und Gewässersedimenten in der Region Oberes Elbtal/Osterzgebirge

1. Zum Umgang mit Bodenaushub

1.1 Begriffe

Mit der Einführung der "Anforderungen an die stoffliche Verwertung von Mineralischen Reststoffen/Abfällen - Technische Regeln" der Landerarbeitsgemeinschaft Abfall (LAGA) stehen für die im Rahmen der Bautätigkeit anfallenden Böden praktikable Begriffe zur Verfügung. Im Sinne der Technischen Regeln der LAGA /1/ sind Böden:

- Bodenaushub als natürlich anstehendes und umgelagertes Locker- und Festgestein (DIN 18 196), das bei Baumaßnahmen ausgehoben oder abgetragen wird (Abfallschlüssel 314 11).

- Bodenaushub mit mineralischen Fremdbestandteilen (z. B. Bauschutt, Schlacke, Ziegelbruch) bis zu 10 Vol. %.

- Boden, der in Bodenreinigungsanlagen gereinigt ist.

1.2 Gesetzliche Regelungen, Grundsätze

Beim Umgang mit Bodenaushub können im Freistaat Sachsen folgende Grundlagen herangezogen werden:

- Im § 7 des Ersten Gesetzes zur Abfallwirtschaft und zum Bodenschutz im Freistaat Sachsen (EGAB) /5/ werden Land, Kommunen und sonstige juristische Personen ver-

- Der Landesentwicklungsplan Sachsen /6/ beinhaltet gleichlautende Grundsätze zum Schutz des Bodens (Punkt III 1). Darüber hinaus wird als Zielstellung festgeschrieben, daß ".... unbelastetes Erdaushubmaterial.... nicht als Abfall abgelagert werden soll" (Punkt III 18.1.3.5).

- Die Grundsätze der Abfallwirtschaftspolitik des Freistaates Sachsen /7/ enthalten präzisierende Forderungen bezüglich der getrennten Erfassung von unbelastetem Bodenaushub sowie einer sachgemäßen Zwischenlagerung und Wiederverwendung von Bodenaushub im Rahmen baulicher Maßnahmen oder der Rekultivierung. Ausdrücklich wird eine Ablagerung von Bodenaushub als Abfall für nicht mehr zulässig erklärt (Punkt 2.3.3). In Bauleitplänen und Fachplänen sowie bei allen Baumaßnahmen ist ein Massenausgleich vorzuschreiben.

1.3 Prüfung auf Schadstoffbelastungen

Für die Beurteilung des zu erwartenden Bodenaushubes in situ und von einzubauendem Bodenaushub werden folgende Einbauklassen herangezogen:

Einbauklasse Z 0: uneingeschränkter Einbau

Einbauklasse Z 1 (Z 1.1, Z 1.2): eingeschränkter offener Einbau

Einbauklasse Z 2: eingeschränkter Einbau mit definierten technischen Sicherungsmaßnahmen

Übersteigen die ermittelten Schadstoffgehalte den Zuordnungswert Z 2, so ist der weitere Umgang mit betroffenem Bodenaushub auf der Grundlage der "Dritten Allgemeinen Verwaltungsvorschrift zum Abfallgesetz" (TA Siedlungsabfall) vom 14. Mai 1993 vorzunehmen /19/.

1.4 Aufkommen und Wiederverwendung von Bodenaushub

1.4.1 Aufkommen

Im Landesabfallwirtschaftsbericht /4/ wird für das Jahr 1993 auf der Grundlage einer Erhebung mit anschließender Plausibilitätsprüfung für den Freistaat Sachsen das Aufkommen an Bodenaushub mit rund 4,6 Mt, das sind rund 8,3 Mio m³ gesamt oder rund 1,7 m³/Einwohner, angegeben. Übertragen auf die Region Oberes Elbtal/Osterzgebirge be-
trug 1993 das Aufkommen an Bodenaushub rund 1,9 Mio m³. Für die Jahre 1994 und 1995 ist infolge der intensiven Bautätigkeit eine wesentliche Aufkommens erhöhung zu verzeichnen.

Folgende aktuelle Beispiele zeigen für einzelne Industrie- und Verkehrsbauprojekten einen erheblichen Massenüberschuß an Bodenaushub:

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straßentunnel am Hauptbahnhof Dresden</td>
<td>rd. 90 000 m³</td>
</tr>
<tr>
<td>Druckerei Grüner und Jahr Dresden</td>
<td>rd. 100 000 m³</td>
</tr>
<tr>
<td>SIMEC Dresden</td>
<td>rd. 240 000 m³</td>
</tr>
<tr>
<td>BAB 14, 6-spuriger Ausbau, 2 Streckenabschnitte</td>
<td>je rd. 350 000 m³</td>
</tr>
<tr>
<td>BAB A 17 Sachsen-Böhmen</td>
<td>rd. 6 000 000 m³</td>
</tr>
</tbody>
</table>

1.4.2 Zur Verwertung des anfallenden Bodenaushubes im Freistaat Sachsen

Der Landesabfallwirtschaftsbericht /4/ für das Jahr 1993 weist für den Freistaat Sachsen folgende Verwertungen aus:

Verwertung mit stofflicher Aufarbeitung	rd. 2 Tt = <<0,1 %
Verwertung ohne Aufarbeitung	rd. 2195 Tt = rd. 47 %
Siedlungsabfalldeponien	rd. 565 Tt = rd. 12 %
Boden-/Bauschuttdeponien	rd. 1883 Tt = rd. 41 %

gesamt 4645 Tt

Danach wird in Sachsen Bodenaushub zu rund 47 % einer Wiederverwendung im Rahmen baulicher Maßnahmen und zu rund 12 % zur Abdeckung von Siedlungsabfalldeponien zugeführt. Auf Boden- und Bauschuttdeponien werden rund 41 % verbracht.

1.5 Zur Wiederverwendung des Bodenaushubes in der Region Oberes Elbtal/Osterzgebirge

- Im Rahmen von Baumaßnahmen

Abdeckung von Altablagerungen

Verfüllung in Tagebau- und Steinbruchrestlöchern

Großflächige Bodenaufschüttungen

Aufschüttungen sind gemäß § 62 Abs. 1 i. Verb. § 2 Abs. 1 Ziffer 1 Sächsische Bauordnung /9/ genehmigungsbedürftige Bauvorhaben.

Leider ist auch festzustellen, daß es neben genehmigten, dem Stand der Technik /10,11/ entsprechenden Bodenaufschüttungen, es auch zu einer Reihe ungenehmigter Aufschüttungen, teilweise in landschaftlich sensiblen Gebieten, kam.

Zwischenlagerung von Bodenaushub

Technische Verwertung von Bodenaushub

Es ergibt sich die Aufgabe, weitere Einsatzgebiete für anfallenden Bodenaushub zu ermitteln und diese bei künftigen Planungen zu berücksichtigen. Möglichkeiten werden u. a. in der Ziegelherstellung, als Versatzzmaterial und im landwirtschaftlichen Wegebau gesehen.

1.6 Empfehlungen

Für eine umfassendere Nutzung des anfallenden Bodenaushubes werden folgende Erfordernisse gesehen:

3. Es ist notwendig, Informationen über Art, Umfang und Zeitraum anfallender Aus hubmassen besser zugänglich zu machen. Da die Bauaufsichtsbehörden die umfangreichste Kenntnis über alle entsprechenden Bauvorhaben besitzen, bietet es sich an, derartige Informationen in den Baubehörden zu sammeln und für Anfragen abrufbereit zu halten.

2. Zum Umgang mit Gewässersedimenten

2.1 Problemstellung

Es sind zumeist wirtschaftliche und ökologische Gründe, die zu regelmäßiger Entfernung von Materialien in Gewässer zwingen. In der Region Oberes Elbtal/Osterzgebirge sind das beispielsweise die Erhaltung der Schiffbarkeit von Elbehäfen, die Unterhaltung von Mühl- oder Triebwerksgräben, die Erhaltung der Funktionsfähigkeit von Vorsperrern sowie die Wiederherstellung aquatischer Biotope durch Entschlammung von Elblachen und Teichen.

2.2 Sedimentbeschaffenheit

Wie u. a. aus dem Teilbericht "Belastung von Elbe- und Hafensedimenten im Bereich der Oberen Elbe" /16/ hervorgeht, sind ihre Gehalte in den Flußabschnitten unterschiedlich hoch und durch Umlagerungen auch am gleichen Probenahmeort zeitlich stark schwankend.

In Häfen, Elblachen und Teichen sind die Konzentrationen ausgeglichener, da bei der Probenahme meist längere Sedimentationszeiträume erfaßt werden. Die Anhäufung bestimmter Elemente tritt aber auch hier vereinzelt auf, wie es die Werte im o. g. Teilbericht verdeutlichen.

Erwartungsgemäß sind dabei Kiese und Sande geringer belastet als feinkörnige Anteile.

In der Regel wiederspiegeln die Befunde die oberhalb der Probenahmestelle vorhandenen Emittenten sowie die geogen bedingte Grund- und Zusatzbelastung der Böden im Erzgebirgsraum.

2.3 Bewertung und Folgerungen

Technische Regeln, wie sie in Form der "Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen für Boden" /1/ vorliegen, fehlen gegenwärtig noch für Gewässersedimente/Baggergut. Aus praktischen Gründen werden deshalb vielfach, obwohl nicht unstrittig, bei angedachter landwirtschaftlicher Verwertung die für Klärschlämme geltende Klärschlammverordnung (AbfKlarV) /18/ in der novellierten Fassung vom 15.
April 1992 sowie für eine vorgesehene bautechnische Verwertung die o. g. Technischen Regeln der LAGA für Boden als Bewertungsgrundlage herangezogen.

Nach der Klärschlammverordnung bewertet, erfüllt ein Großteil der Sedimente, insbesondere die von Teichen, die Anforderungen dieser Verordnung, d. h., die Sedimente sind bei geeigneter Korngröße unter Einhaltung einer im § 6 AbfKlärV vorgegebenen Aufbringungsmasse (analog Klärschlamm) potentiell für eine landwirtschaftliche Verwertung geeignet.

Die Bewertung der Sedimente von Flüssen, Häfen und Lachen nach den Technischen Regeln der LAGA (1) läßt erkennen, daß meist nur ein "eingeschränkter offener Einbau" oder ein "eingeschränkter Einbau mit definierten technischen Sicherungsmaßnahmen" in Frage kommt. Verwertungsbeispiele und Anforderungen dafür sollten den zitierten Technischen Regeln für die Einbauklassen Z 1.2 und Z 2 entnommen werden.

Es wurde darauf hingewiesen, daß feinkörnige/schluffige Fraktionen höhere Schadstoffbelastungen aufweisen als das Grobkorn. Das bietet die Möglichkeit, schadstoffarme Fraktionen selektiv zu gewinnen oder in einer Bodenbehandlungsanlage das weniger belastete Grobkorn abzutrennen und bautechnisch zu verwerfen. Letztlich entscheiden darüber die Kosten. In Hinblick auf steigende Deponiekosten und abnehmende Deponiekapazitäten wird darin jedoch ein für die Zukunft gangbarer Weg gesehen.

In beiden Fällen sind die Sedimente nach den Anforderungen der Technischen Anleitung Siedlungsabfall (TA Siedlungsabfall) (2) oder im Falle einer Behandlung in einer Abfallbehandlungsanlage zwecks Beseitigung der unverwertbaren Anteile nach der Technischen Anleitung Abfall (TA Abfall) zu untersuchen.

Da für eine angedachte Verwertung in der Regel andere analytische Untersuchungen als bei der Beseitigung auf einer Deponie gefordert sind, ist die Frage nach Verwertung oder Ablagerung im Interesse von Zeitgewinn und Kostenersparnis bereits im Vorfeld der Untersuchungen zu klären.

Literatur und sonstige Quellen

(2) Baugesetzbuch (BauGB) in der Fassung vom 08.12.1986, zuletzt geänd. durch EVertr. vom 31.08.1990.

Verordnung der Sächsischen Staatsregierung über den Landesentwicklungsplan Sachsen (LEP) vom 16.08.1994 (Sächs.GVBl. Nr. 51 vom 05.09.1994).

Sächsische Bauordnung (SächsBO) vom 26.07.1994 (Sächs. GVBl. Nr. 47 vom 04.08.1994).

MACH, R.; BLICKWEDEL, P.; DEHMEL, G., Information zu Baggergut IV, Stand Mai 1987 des Umweltbundesamtes, Fachbereich III 2.3.

Klärschlammverordnung (AbfKLärV) vom April 1992 (BGBl I S. 912)

188